Fourier series expansion in a non-orthogonal system of coordinates for the simulation of 3D-DC borehole resistivity measurements

نویسنده

  • D. Pardo
چکیده

We describe a new method to simulate 3D borehole resistivity measurements at zero frequency (DC). The method combines the use of a Fourier series expansion in a non-orthogonal system of coordinates with an existing 2D goal-oriented higher-order self-adaptive hpfinite element algorithm. The new method is suitable for simulating measurements acquired with borehole logging instruments in deviated wells. It delivers high-accuracy simulations and it enables a considerable reduction of the computational complexity with respect to available 3D simulators, since the number of Fourier modes (basis functions) needed to solve practical applications is limited (typically, below 10). Furthermore, numerical results indicate that the optimal 2D grid based on the 0th Fourier mode (also called central Fourier mode) can be employed to efficiently solve the final 3D problem, thereby, avoiding the expensive construction of optimal 3D grids. Specifically, for a challenging through-casing resistivity application, we reduce the computational time from several days (using a 3D simulator) to just 2 h (with the new method), while gaining accuracy. The new simulation method can be easily extended to different physical phenomena with similar geometries, as those arising in the simulation of 3D borehole electrodynamics and sonic (acoustics coupled with elasticity) measurements. In addition, the method is especially suited for inversion, since we demonstrate that the number of Fourier modes needed for the exact representation of the materials is limited to only one (the central mode) for the case of borehole measurements acquired in deviated wells. 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

hp-HGS strategy for inverse AC/DC resistivity logging measurement simulations

In this paper, we present resistivity-logging-measurement simulation with the use of two types of borehole logging devices: those which operate with zero frequency (direct current, DC) and those with higher frequencies (alternate current, AC). We perform simulations of 3D resistivity measurements in deviated wells, with a sharp angle between the borehole and formation layers. We introduce a hie...

متن کامل

hp-HGS strategy for inverse 3D DC resistivity logging measurement simulations

In this paper we present a twin adaptive strategy hp-HGS for solving inverse problems related to 3D DC borehole resistivity measurement simulations. The term ”simulation of measurements” is widely used by the geophysical community. A quantity of interest, voltage, is measured at a receiver electrode located in the logging instrument. We use the self-adaptive goal-oriented hp-Finite Element Meth...

متن کامل

RESIP2DMODE: A MATLAB-Based 2D Resistivity and Induced Polarization Forward Modeling Software

Forward modeling is an integral part of every geophysical modeling resulting in the numerical simulation of responses for a given physical property model. This Forward procedure is helpful in geophysics both as a means to interpret data in a research setting and as a means to enhance physical understanding in an educational setting. Calculation of resistivity and induced polarization forward re...

متن کامل

Simulation of 3D DC Borehole Resistivity Measurements with a Goal- Oriented hp Finite-Element Method. Part I: Laterolog and LWD

We simulate and study the combined three-dimensional effects on resistivity logging measurements due to dip angle (in deviated wells), different arrangements of three-dimensional electrodes, and anisotropy effects. All results correspond to electrostatic (zero frequency) measurements. Thus, we consider direct current (DC) electrodes. We simulate both laterolog and logging-while-drilling (LWD) m...

متن کامل

Research on Algorithm of Borehole Resistivity Imaging Method

Original scientific paper Traditional dc electrical exploration method will face great challenge when detecting deep, complex geologic target. With the purpose, forward modelling and inverse modelling method of borehole resistivity has been developed. According to the characters of geology, the geological model has been set up. The numerical simulation shows that borehole resistivity method is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008